The CS655 is a multiparameter smart sensor that uses innovative techniques to monitor soil volumetric-water content, bulk electrical conductivity, and temperature. It outputs an SDI-12 signal that many of our data loggers can measure. It has shorter rods than the CS650, for use in problem soils.
Note: The cable termination options for this sensor are not suitable for use with an ET107 station. For this type of station, use the CS655-LC sensor instead, which has a suitable cable connector.
Read MoreThe CS655 consists of two 12-cm-long stainless steel rods connected to a printed circuit board. The circuit board is encapsulated in epoxy and a shielded cable is attached to the circuit board for data logger connection.
The CS655 measures propagation time, signal attenuation, and temperature. Dielectric permittivity, volumetric water content, and bulk electrical conductivity are then derived from these raw values.
Measured signal attenuation is used to correct for the loss effect on reflection detection and thus propagation time measurement. This loss-effect correction allows accurate water content measurements in soils with bulk EC ≤8 dS m-1 without performing a soil-specific calibration.
Soil bulk electrical conductivity is also calculated from the attenuation measurement. A thermistor in thermal contact with a probe rod near the epoxy surface measures temperature. Horizontal installation of the sensor provides accurate soil temperature measurement at the same depth as the water content. Temperature measurement in other orientations will be that of the region near the rod entrance into the epoxy body.
Measurements Made | Soil electrical conductivity (EC), relative dielectric permittivity, volumetric water content (VWC), soil temperature |
Required Equipment | Measurement system |
Soil Suitability | Short rods are easy to install in hard soil. Suitable for soils with higher electrical conductivity. |
Rods | Not replaceable |
Sensors | Not interchangeable |
Sensing Volume | 3600 cm3 (~7.5 cm radius around each probe rod and 4.5 cm beyond the end of the rods) |
Electromagnetic | CE compliant (Meets EN61326 requirements for protection against electrostatic discharge and surge.) |
Operating Temperature Range | -50° to +70°C |
Sensor Output | SDI-12; serial RS-232 |
Warm-up Time | 3 s |
Measurement Time | 3 ms to measure; 600 ms to complete SDI-12 command |
Power Supply Requirements | 6 to 18 Vdc (Must be able to supply 45 mA @ 12 Vdc.) |
Maximum Cable Length | 610 m (2000 ft) combined length for up to 25 sensors connected to the same data logger control port |
Rod Spacing | 32 mm (1.3 in.) |
Ingress Protection Rating | IP68 |
Rod Diameter | 3.2 mm (0.13 in.) |
Rod Length | 120 mm (4.7 in.) |
Probe Head Dimensions | 85 x 63 x 18 mm (3.3 x 2.5 x 0.7 in.) |
Cable Weight | 35 g per m (0.38 oz per ft) |
Probe Weight | 240 g (8.5 oz) without cable |
Current Drain |
|
Active (3 ms) |
|
Quiescent | 135 µA typical (@ 12 Vdc) |
Electrical Conductivity |
|
Range for Solution EC | 0 to 8 dS/m |
Range for Bulk EC | 0 to 8 dS/m |
Accuracy | ±(5% of reading + 0.05 dS/m) |
Precision | 0.5% of BEC |
Relative Dielectric Permittivity |
|
Range | 1 to 81 |
Accuracy |
|
Precision | < 0.02 |
Volumetric Water Content |
|
Range | 0 to 100% (with M4 command) |
Water Content Accuracy |
|
Precision | < 0.05% |
Soil Temperature |
|
Range | -50° to +70°C |
Resolution | 0.001°C |
Accuracy |
|
Precision | ±0.02°C |
Note: The following shows notable compatibility information. It is not a comprehensive list of all compatible or incompatible products.
Product | Compatible | Note |
---|---|---|
CR1000 (retired) | ||
CR1000X | ||
CR300 | ||
CR3000 (retired) | ||
CR310 | ||
CR350 | ||
CR6 | ||
CR800 (retired) | ||
CR850 (retired) |
External RF sources can affect the probe’s operation. Therefore, the probe should be located away from significant sources of RF such as ac power lines and motors.
Multiple CS655 probes can be installed within 4 inches of each other when using the standard data logger SDI-12 “M” command. The SDI-12 “M” command allows only one probe to be enabled at a time.
The CS650G makes inserting soil-water sensors easier in dense or rocky soils. This tool can be hammered into the soil with force that might damage the sensor if the CS650G was not used. It makes pilot holes into which the rods of the sensors can then be inserted.
Current CS650 and CS655 firmware.
Note: The Device Configuration Utility and A200 Sensor-to-PC Interface are required to upload the included firmware to the sensor.
Number of FAQs related to CS655: 55
Expand AllCollapse All
Probably not. The principle that makes these sensors work is that liquid water has a dielectric permittivity of close to 80, while soil solid particles have a dielectric permittivity of approximately 3 to 6. Because the permittivity of water is over an order of magnitude higher than that of soil solids, water content has a significant impact on the overall bulk dielectric permittivity of the soil. When the soil becomes very dry, that impact is minimized, and it becomes difficult for the sensor to detect small amounts of water. In air dry soil, there is residual water that does not respond to an electric field in the same way as it does when there is enough water to flow among soil pores. Residual water content can range from approximately 0.03 in coarse soils to approximately 0.25 in clay. In the natural environment, water contents below 0.05 indicate that the soil is as dry as it is likely to get. Very small changes in water content will likely cause a change in the sensor period average and permittivity readings, but, to interpret those changes, a very careful calibration using temperature compensation would need to be performed.
The electrical conductivity (EC) of sea water is approximately 48 dS/m. The CS655 can measure permittivity in water with EC between 0 and 8 dS/m. EC readings become extremely unstable at conductivities higher than 8 dS/m and are reported as NAN or 9999999. Because EC is part of the permittivity equation, an EC reading of NAN leads to a permittivity reading of NAN as well. Thus, the CS655 cannot provide good readings in sea water.
With regard to sea ice, the electrical conductivity drops significantly when sea water freezes and the permittivity changes from approximately 88 down to approximately 4, as the water changes from a liquid to a solid state. With both EC and permittivity falling to levels that are within the CS655 measurement range, the sensor is expected to give valid readings in sea ice. The sensor is rugged and can withstand the cold temperatures. However, as the ice melts, there will be a point at which the electrical conductivity becomes too high to acquire a valid reading for either permittivity or electrical conductivity.
No. The abrupt permittivity change at the interface of air and saturated soil causes a different period average response than would occur with the more gradual permittivity change found when the sensor rods are completely inserted in the soil.
For example, if a CS650 or a CS655 was inserted halfway into a saturated soil with a volumetric water content of 0.4, the sensor would provide a different period average and permittivity reading than if the probe was fully inserted into the same soil when it had a volumetric water content of 0.2.
Damage to the CS650 or the CS655 electronics or rods cannot be repaired because these components are potted in epoxy. Cable damage, on the other hand, may possibly be repaired. For more information, refer to the Repair and Calibration page.
Campbell Scientific strongly discourages shortening the sensor’s rods. The electronics in the sensor head have been optimized to work with the 12 cm long rods. Shortening these rods will change the period average. Consequently, the equations in the firmware will become invalid and give inaccurate readings.
Because the reported volumetric water content reading is an average taken along the entire length of the rods, the sensor should be fully inserted into the soil. Otherwise, the reading will be the average of both the air and the soil, which will lead to an underestimation of water content. If the sensor rods are too long to go all the way into the soil, Campbell Scientific recommends inserting the rods at an angle until they are fully covered by soil.
Modifications to the CS650 or CS655, including shortening the cable, will void the warranty. However, shortening the cable will not affect the sensor’s performance. If a decision is made to shorten the cable, care should be taken to avoid damaging the cable jacket and exposing bare wire except at the ends that connect to the data logger or multiplexer terminals.
The CWS655 is a wireless sensor with measurement electronics, radio, and power supply all integrated in a single device. The CWS655, however, requires the use of a CWB100 base station radio connected to a data logger. Only the rods of the CWS655 should be buried in the soil; burying the body of the CWS655 will prevent the sensor from communicating with the CWB100.
The CS655 is a cabled multiparameter smart sensor that sends data by RS-232 serial or SDI-12 communication through a direct connection to a data logger. The CS655 is suitable for burial at any depth.
A CS650 or CS655 can be ordered with an SDI-12 address option of -VS. With the -VS option, the SDI-12 address is set at the factory before the sensor is shipped. The last digit of the sensor’s serial number becomes that sensor’s SDI-12 address. Typically, the -VS option is chosen when there are multiple sensors that will communicate with the data logger on the same SDI-12 communications terminal.
If the -VS option is not selected when ordering, the CS650 or CS655 will ship with its SDI-12 address set to 0 (the default -DS option). The address can be changed to a non-zero value using the A200 Sensor to PC Interface or by connecting the sensor to an SDI-12 communications terminal and sending the aAb! Command as described in the “SDI-12 Sensor Support” appendix of the CS650/CS655 manual.
The CS650 and CS655 are warranted by Campbell Scientific to be free from defects in materials and workmanship under normal use and service for 12 months from the date of shipment. For further details, see the “Warranty” section of the CS650/CS655 manual.
We've updated our privacy policy. Learn More
Update your cookie preferences. Update Cookie Preferences